
SW support for NPU
accelerators for Linux-type

operating systems

Bachelor's Thesis by Michal Žáček

Study Programme: Systems and Virtualization

Czech Technical University in Prague

,

Faculty of Information Technology

Prague, 2025-05-26

 supervised by
Petr Zemánek

0.1 English

0.1.1 Abstract
This document covers information about the NPU chip included in the NXP i.MX 8MP Evaluation Kit
(EVK), how it is used, what the different frontends to it have in common or differ in. We then perform
some rudimentary benchmarks in order to determine the practical benefit of utilising the NPU for a
common workload, before ending on a description of the components required for PikeOS to claim
NPU support, and what porting them could entail.

0.1.2 Keywords
hardware acceleration, embedded, machine learning hardware, linux, platform porting, TQ, NXP i.MX
8MP

0.2 Czech

0.2.1 Abstract
Tento dokument zahrnuje informace o NPU čipu, kterým je vybavena deska NXP i.MX 8MP EVK,
jak se používá, jaké k němu existují přistupové cesty, v čem se liší či co mají společného. Provedeme
několik základních benchmarků abychom zjistili jaký je skutečný přínos chipu pro některé běžné
ůkony. Nakonec shrneme co je potřeba aby PikeOS podporoval, pro oficiální podporu tohoto NPU čipu
a probereme, co portování těchto knihoven může zahrnovat.

0.2.2 Keywords
hardwarová akcelerace, embed, hardware na strojové učení, linux, porting mezi platformami, TQ, NXP
i.MX 8MP

Contents
0.1 English 2

0.1.1 Abstract 2
0.1.2 Keywords 2

0.2 Czech 2
0.2.1 Abstract 2
0.2.2 Keywords 2

1 Declaration 7

2 Introduction 10

3 NPUs (Neural Processing Units) 11

4 File Formats 13
4.1 Keras / HDF5 13
4.2 Pickle 13
4.3 Block map .bmap 14
4.4 System Package Data Exchange .spdx 14
4.5 OpenEmbedded Image Creator .wic 14
4.6 OpenEmbedded kickstart file .wks 14
4.7 Flattened Device Tree .fdt / Device Tree Source .dts 14

5 OpenVX™ & TIM-VX 15

6 Setting up the environment 17
6.1 Kernel Tests 18
6.2 ONNXRuntime 18
6.3 TIM-VX 19
6.4 OpenCV 19

7 The Graph Workflow 22
7.1 Python Subclasses modelling Tensor functions 22

7.1.1 forward (mandatory) 24
7.1.2 __init__ 24
7.1.3 Movement functions 24

7.2 Exporting Models to files 24
7.3 Keras 25
7.4 Other Tools 25

7.4.1 Visualization: Netron & Zetane 25
7.4.2 Conversion: Tensor2onnx & Tflite2onnx 26

8 Hardware Specifics 27
8.1 NPU Contents 27

8.1.1 Parallel Processing Unit (PPU) 27
8.1.2 Neural Network Engine 27
8.1.3 Tensor Processor 27

8.2 Configuration Environment Variables read by Tensor Interface Module for OpenVX (TIM-
VX) 27

8.3 Power Modes 28

3

Contents

9 Frameworks 29
9.1 LiteRT (Lite RunTime) 29
9.2 Tensor Virtual Machine (TVM) 30
9.3 Open Neural Network Exchange (ONNX) 30
9.4 Unaddressed frameworks 31

9.4.1 The NXP eIQ environment 31
9.4.2 Android NNAPI 31
9.4.3 Paddle Paddle 32

10 Performance 33
10.0.1 Startup 33
10.0.2 Quantization 33
10.0.3 Dynamic loading of Libraries 34
10.0.4 Bus 34
10.0.5 NPU Clogging 34

10.1 Benchmarking Practical Results 34

11 Suggesting PikeOS integration 36

12 Conclusion 37

13 Build configuration 38

14 Glossary 39

Bibliography 40

4

List of Figures

Figure 1 The NXP i.MX 8MP EVK we worked on 11

Figure 2 A diagram showing TIM-VX’s role in running models on NPUs (1) 16

Figure 3 Example of a Netron graph render 25

5

List of Tables

Table 1 Tensor Processor supported operations 27

Table 2 Configuration Environment Variables read by TIM-VX 28

Table 3 Power Modes 28

Table 4 mobilenet_v1_1.0_224_quant Performance Metrics 34

Table 5 MobileNetV3Large Quantization tests 34

Table 6 Various Models performance 35

6

Chapter 1

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating an
academic final thesis.

I declare that I have not used any AI tools during the preparation and writing of the thesis. I am
aware of the consequences of apparently unacknowledged use of these tools in the production of any
part of my thesis. Specifically the sole use was for ocassional primary source reconaissance, akin to
a search engine, before processing and utilising the primary sources on their own merit exclusively
using my own eyes and words.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No.,121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical University
in Prague has the right to conclude a license agreement on the utilization of this thesis as a school
work under the provisions of Article 60 (1) of the Act.

In Prague on May 16, 2025: ...

7

1 Declaration

8

1 Declaration

9

Chapter 2

Introduction

Our computing devices have come a long way in terms of speed, and of course in terms of operating
complexity. This complexity can hold back very general purpose processing units in performance
when it comes to highly specialized tasks. For a long time, GPUs were used where a large number
of specialized identical operations needed to be performed on a vast array of differing data inputs,
as their specialized design for this use case made them incomparably faster than using a common
general-purpose CPU. Though most often associated with their namesake of graphics, they excel in
many applications and have become a valuable tool when working with neural networks.

Recently, even more specialized hardware has become available to meet the rising demand to have
access to these technologies in more portable devices or for use in embedded situations. Neural
Processing Units¹, are becoming more common, however these don’t often come with universal drivers
and the most widespread standard today has no freely adoptable implementation.

Our goals in this thesis are to initially lay out the defined and known terms used in the context
of neural nets, such as hardware, alternate names of known concepts, or file formats. Following
this we shall go through the existing solutions implementing both the communication with actually
hardware in the form of modules followed by frontend APIs for NPU work. We will then go through
the advantages that this hardware should in theory provide followed by a practical test of the actual
results on real hardware. The code will be made available so that it may be run to test and/or verify
these results. Finally, we discuss what this means for PikeOS integration of NPU support.

As most of our sources are proprietary documentation, this work will sadly be light on detailed
images and diagrams available in the primary sources.

¹Historically also called Versatile/Tensor/Intelligence Processing Units (VPU/TPU/IPU), however for simplicity’s sake
we will use the term NPU and only deviate if a specific function or product uses one of the alternatives

10

Chapter 3

NPUs (Neural Processing Units)

Neural Processing Units (further shortened to NPU) are in general a type of hardware accelerator
which is optimized to efficiently handle Machine Learning workloads. They offer both faster inference
and often a lower energy footprint on edge devices (2). Our NPU in question is composed of a frontend
that is used for communication between the NPU and the rest of the board, a parallel processing unit,
a neural network engine along with a backing storage. The device works with 4-element vectors of
16/32-bit IEEE floating-point or 8/16/32-bit integers either signed or unsigned. The device implements
the OpenVX™ hardware API along with some extensions and VeriSilicon provides two separate official
libraries through which to call this API. The open-source TIM-VX (1) which contains C++ bindings,
and Ovxlib which contains C bindings. TIM-XV calls into one of two SDKs, the VeriSilicon Unified
OpenVX™ SDK supporting both compiling and running using either the GPU or NPU units, and the (as
far as I can tell proprietary, since the traces of this SDK online are close to nonexistent) VIP-Lite SDK
that only contains the runtime for the NPU. TIM-VX is used as the target for third-party frameworks
targeting the board’s NPU. Of these we used specifically the former VeriSilicon SDK also often listed
as Vivante SDK or directly imx-gpu-viv² in recipes, as this was the one used by all of the NXP recipes.

The SDK includes the libraries listed in Listing 1. Of these only the ones marked with * are linked
against by OpenVX™.

Figure 1: The NXP i.MX 8MP EVK we worked on

²The name is GPU, however it contains shared drivers for both NPU and GPU.

11

3 NPUs (Neural Processing Units)

• libArchModelSw.so*
• libCLC.so
• libGAL.so*
• libNNArchPerf.so*
• libOpenVX.so*
• libOpenVXC.so
• libOpenVXU.so
• libVSC.so*

Listing 1: List of SDK libraries

12

Chapter 4

File Formats

First, we present a rundown of the various different formats encountered throughout this work,
commonly used in the machine learning space and during yocto builds and flashes.

4.1 Keras / HDF5
Keras is a library released in 2010 as part of a research effort, originally at Alphabet (3). Its relation to
TensorFlow will be apparent later. Keras’ currently used filetype .keras is a wrapper format consisting
of a ZIP-archive containing an .h5 file holding the layers and weights of a model, and some json
metadata about Keras’ configuration, the creation date, version information, etc.

HDF stands for Hierarchical Data Format; it contains a POSIX-filesystem style hierarchy of groups
akin to directories, even supporting hard and soft links. Datasets take the role of files and contain
tensors with associated shapes and dtypes and can be read and written to, treating them as numpy
arrays (4),(5).

1 import h5py Python
2
3 data = h5py.File("model.weights.h5")
4
5 # All valid
6 data['/layers/flatten/vars']
7 data['layers/flatten/vars']
8 subdata = data['layers']['flatten']
9 subdata['vars']
10
11 data['/layers/dense/vars/0']
12 #=> <HDF5 dataset "0": shape (784, 128), type "<f4">
13
14 data['/layers/dense/vars/0'][0]
15 #=> array([0.01777279, 0.07076738,
16 # -0.05744237, 0.06602553,
17 # ...])

Listing 2: HDF5 structure access

As compression is done by Keras in-memory saving and loading are transparent to whether one is
working with a ZIP archive or a directory of files.

4.2 Pickle
This is dangerous to use.

Some formats, especially those that allow a wide array of Python datatypes, may allow unwanted
code to execute as well when loaded. As a representative of these, we mention Pickle. Since pickling
allows arbitrary instances of classes, malicious code may be inserted as well into any model down-
loaded.

13

4 File Formats

An example taken from (6) can be seen in Listing 3.

1 import pickle Python
2 import os
3
4 class RCE:
5 def __reduce__(self):
6 cmd = ('echo GET HACKED')
7 return os.system, (cmd,)
8
9
10 with open("tensor.bin", "wb") as f:
11 pickle.dump(RCE(),f)

Listing 3: Class Exploiting Pickle deserialization

4.3 Block map .bmap
Relates to Yocto project’s (formerly Intel’s) bmaptool from (7), which is used to flash data similarly
to dd. Unlike dd, this tool verifies the integrity of flashed data, supports more complex arrangements
such as sourcing the image from a remote server, supports sparse definitions, and includes protections
from accidentally destroying data on disks that seem like regular mounted block devices.

4.4 System Package Data Exchange .spdx
A Bill of Materials of all the included packages used to build an image including all the versions and
metadata (8).

4.5 OpenEmbedded Image Creator .wic
Should your device require multiple partitions (9). Use if bmap is not supported as it does not support
sparsness, etc.

4.6 OpenEmbedded kickstart file .wks
Contains build commands for the wic command (9).

4.7 Flattened Device Tree .fdt / Device Tree Source .dts
Device tree source describes hardware (10), and is subsequently compiled into .dtb. Determines how
some things are flashed and written based on the target.

14

Chapter 5

OpenVX™ & TIM-VX

OpenVX™ is a standard hardware API that can be implemented by hardware vendors of hardware
accelerators and exposed as a C API to users (11). The Khronos group that manages the OpenVX™
specification only describes an abstract machine and certain operators with defined semantics. The
implementation of the operators in terms of hardware is completely up to the vendor, and the specifi-
cation aims to be written in a way as to allow as much optimization as possible. When we spoke so far
of libOpenVX.so, that is VeriSilicon’s pre-compiled implementation of the OpenVX™ API. OpenVX™
officially aims at vision processing specifically, however there are Neural Network extensions to allow
using the same pipeline to also accelerate machine learning operations utilizing the tensor structure
from the full OpenVX™ v1.2 Spec, and extending it with new operators such as vxActivationLayer,
vxConvolutionLayer, vxFullyConnectedLayer, vxSoftmaxLayer and more (12).

Known Implementors of this API are:

VeriSilicon The libOpenVX.so object all our libraries link against
KhronosGroup/OpenVX-sample-impl Only truly open-source implementation, however, it is

supposedly very ad-hoc, slowly implemented, and emulates the given operators on CPU or related
using OpenCL (13).

TexasInstruments/tiovx Source available but only authorized for use on TI hardware.
AMD MIVisionX Part of the ROCm environment, it implements OpenVX™ over AMD’s GPUs and

CPUS (14).
Intel OpenVINO
Nvidia VisionWorks

However, only the relevant vendor makes sense to use as it is tightly coupled to the given device that
is to be controlled with it. The x86_64 OpenVX™ version available from the TIM-VX repository only
emulates the behaviour of the API using the machine’s CPU.

OpenVX™ still uses a graph abstraction; however, the operations are far too low-level to be conve-
nient and useful for the purposes of general-purpose machine learning jobs. Especially since they
do not interoperate with existing well-known formats from the public machine learning ecosystem.
Which is why we opted to rather focus on relevant and convenient libraries that wrap OpenVX™
instead of calling it directly.

Further information about what the library handles is given in the chapter on Startup (see
Section 10.0.1)).

15

5 OpenVX™ & TIM-VX

Unified SDK...Computer Kernels...

TIM-VX...

TIM-VX API

Graph... OpenVX Versilicon Ex...

HAL

OpenVX API

Compiler

Amlogic... NXP...Simulator...

external...

BYOC

compute...

Tensorflow...

TVM

Tengine

Acuity...

Other Platf...

VIP-Lite SDK...

HAL

Runtime
GPU NPU

Runtime

LiteExecutor

Network Binary Graph

XLA-NPU-JIT TensorFlow

SupportLibrary... Android-NNAPI

ExecutionProvider OnnxRuntimeCodeGen

Amlogic...

VIP-Lite API

VeriSilicon Unified OpenV... VeriSilicon VIP-Lite SDK off...

OpenCV

PaddleLite

Backend

NNAdapter

Text is not SVG - cannot display

Figure 2: A diagram showing TIM-VX’s role in running models on NPUs (1)

TIM-VX is a C++ wrapper library meant for external software vendors to link against instead of
OpenVX™ for a more high-level and universal API (1). As can be seen in Figure 2) TIM-VX is linked
against by all our frameworks and many more, including the Android soon to be deprecated NNAPI.
Some of these are officially supported by the frameworks themselves, and some have official NXP forks
or third-party forks. Beyond the higher-abstractions specifically tailored to machine learning, it also
includes many utilities for debugging. The library additionally supports boards other than our own.

16

Chapter 6

Setting up the environment

Our testing environment consists of a Yocto distribution, running on our aformentioned chip.

meta-overlay will further be used to refer to our custom layer for the purposes of this thesis.

We use both the BSP and related layers directly from the TQ website, followed by the NXP meta-
imx layer, cloned via the repo (15) utility from their manifest repository (16).

Repo is a utility developed by Alphabet to work with multiple, completely separate as far as Git is
concerned, repositories and treat them as Git would treat submodules. The repositories are initialized
from an eXtensible Markup Language (XML) file hosted in an arbitrary repository, which contains a
set of remotes and “projects” (repositories) that will be fetched into the final checkout.

1 repo init \\ Shell
2 -u https://github.com/nxp-imx/imx-manifest.git \\
3 -b imx-linux-scarthgap \\
4 -m imx-6.6.52-2.2.0.xml

Listing 4: IMX repo initialization

Afterwards a bit of guesswork was required to get all the compatible versions of all the layers and
packages. A combination of some layers from the original BSP and the NXP-IMX manifest was used
in the end. Mostly due to mismatches in gstreamer versions as meta-imx requires a version not below
1.24.0, but the bsp provides 1.22.5. The result of this is found in Chapter 13.

Following this we configure a build directory with the Machine: tqma8mpxl-mba8mpx and Distro:
fsl-imx-wayland.

1 source setup-environment tqma8mpxl_build Shell

Next we need an environment with all the programs that bitbake expects and needs to function. In our
case we opted for an Ubuntu:22.04 Docker container, with some extra packages installed as determined
by consulting (17) initialized by Listing 5.

1 FROM ubuntu:22.04 Dockerfile
2 RUN apt -o APT::Sandbox::User=root update
3 RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC \\
4 apt -o APT::Sandbox::User=root \\
5 install -y gawk wget git diffstat unzip texinfo gcc \\
6 build-essential chrpath socat cpio python3 python3-pip \\
7 python3-pexpect xz-utils debianutils iputils-ping \\
8 python3-git python3-jinja2 python3-subunit zstd \\
9 liblz4-tool file locales libacl1
10 RUN locale-gen en_US.UTF-8

Listing 5: Build Image Dockerfile

After building we may enter the environment with Listing 6.

17

6 Setting up the environment

1 docker run --rm -it \\ Shell
2 -v .../scarthgap.TQ.ARM.BSP.0001:/src \\
3 --userns=keep-id bitbake-env

Listing 6: Entering Build Image

And we may now build the project:

1 bitbake imx-image-full BitBake

The output will be available under:

1 ./tmp/work/imx8mpevk-poky-linux/imx-image-full/...
2 .../1.0/deploy-imx-image-full-image-complete

This may take many hours. Once successful, flashing is done with the command in Listing 7.

1 sudo uuu -v -b sd_all \\ Shell
2 ./images/imx-boot-tqma8mpxl-mba8mpxl-mfgtool.bin-flash_spl_uboot \\
3 ./images/imx-image-full-tqma8mpxl-mba8mpxl.rootfs.wic

Listing 7: Flashing image to device

6.1 Kernel Tests
The VSOCK Makefile has no install goal, yet the recipe tries to call it, so we just disable that part of
the recipe with the following:

1 PACKAGECONFIG:kernel-tools = "" BitBake

6.2 ONNXRuntime
We change the original ONNXRuntime recipe’s source from NXP to the official repo as it now supports
our NPU through the use of the TIM-VX library (Listing 8).

1 ONNXRUNTIME_SRC ?= "gitsm://github.com/microsoft/onnxruntime.git" BitBake
2 SRC_URI = "${ONNXRUNTIME_SRC};nobranch=1;protocol=https
3 # Rel-1.21.0
4 SRCREV = "e0b66cad282043d4377cea5269083f17771b6dfc"

Listing 8: ONNXRuntime Build recipe src patch

ONNXRuntime’s configuration script can’t by default find our installation of TIM-VX, so we must
assist it a bit, in addition to adding it to (R)DEPENDS (Listing 9).

1 DEPENDS = "libpng zlib tim-vx tvm" BitBake
2 RDEPENDS:${PN} = "tim-vx tvm"
3
4 do_configure:prepend () {
5 export TIM_VX_INSTALL="/usr"
6 }

Listing 9: ONNXRuntime Build recipe dependency patch

Next we must also actually enable the use of this library by adding the associated configuration flag
(Listing 10).

18

6 Setting up the environment

1 EXTRA_OECMAKE += "\\ BitBake
2 -Donnxruntime_USE_VSINPU=ON \\
3 -Donnxruntime_USE_TVM=ON \\
4 "

Listing 10: ONNXRuntime Build recipe configure flags patch

As of writing the main 1.21.0 version of ONNXRuntime is the first to support VeriSilicon™ NPU
(VsiNPU), however the release version had broken support for targets with no fp16 support, therefore
a pr’s commit with the fix needs to be used.

GitHub - Issue: 23957, PR: 23978

It is very fast on track to be merged into main, but now we apply these few commits with a patch.

1 SRC_URI:append = " file://fajin-corp_gh_pr_23978.patch"

Another patch is required though as the function

VSINPUExecutionprovider::GetCapability

in the file vsinpu_execution_provider.cc calls a logger, yet omits to declare one so we must add
it manually.

1 const auto& logger = *GetLogger(); C++

The call to save_build_and_package_info in setup.py, causes an error. It is only a buildinfo log,
so simply removing it creates a warning when importing the module, however without hindering
further use.

The patch is included with the work.

1 SRC_URI:append = " file://fix_logger.patch" BitBake

6.3 TIM-VX
This was simply needed to be updated to version 1.2.22, from the official VeriSilicon repo Listing 11.

1 SRC_URI = "${TIM_VX_SRC};nobranch=1" BitBake
2 TIM_VX_SRC ?= "git://github.com/VeriSilicon/TIM-VX.git;protocol=https"
3 SRCREV = "8494275d7608942aa584c9c13bd5e2d77be9906c"

Listing 11: TIM-VX’s new version bb recipe

6.4 OpenCV
The build recipe for OpenCV is patchable, we add TIM-VX to dependencies, enable it in OpenCV and
again point the configuration script at our installation directory with the file opencv_\\%.bbappend
containing Listing 12.

19

6 Setting up the environment

1 EXTRA_OECMAKE:append = "\\ BitBake
2 -D BUILD_opencv_gapi=OFF \\
3 -D WITH_TIMVX=ON \\
4 -D TIMVX_INSTALL_DIR=/usr/lib \\
5 "
6
7 DEPENDS:append = " tim-vx"
8 RDEPENDS:${PN}:append = " tim-vx"
9
10 INSANE_SKIP:${PN}-dbg += "libdir file-rdeps"
11 INSANE_SKIP:${PN} += "buildpaths"

Listing 12: OpenCV recipe to build with external TIM-VX

Compiling with external TIM-VX lib like this, which is strongly advised against (18), yields a segfault-
ing library which can be seen in .

1 >>> cv.setUseOpenVX(True) Python
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 cv2.error: OpenCV(4.10.0) .../src/ovx.cpp:101:
5 error: (-215:Assertion failed)
6 !flag && "OpenVX support isn't enabled at compile time"
7 in function 'setUseOpenVX'
8
9 >>> cv.useOpenVX()
10 False
11
12 # Segfaults
13 self._model = cv.FaceDetectorYN.create(...)

Listing 13: Trying to enable OpenVX in OpenCV with external library

Trying to compile TIM-VX directly in OpenCV requires us to add Fortran to our toolchain due to a new
dependence on lapack lest we encounter error Listing 14. We also must re-enable OpenCV downloads
since the default recipe tries to prevent random downloads during configuration, by caching the
downloads themselves. This can be seen in our new recipe Listing 15.

1 libgfortran was skipped:
2 libgfortran needs fortran support to be enabled in the compiler

Listing 14: Fortran missing from Toolchain error

20

6 Setting up the environment

1 EXTRA_OECMAKE:append = "\\ BitBake
2 -D BUILD_opencv_gapi=OFF \\
3 -D WITH_TIMVX=ON \\
4 -D OPENCV_ALLOW_DOWNLOADS=ON \\
5 "
6
7 DEPENDS:append = " tim-vx lapack"
8 RDEPENDS:${PN}:append = " tim-vx lapack"

Listing 15: OpenCV recipe to build with internal TIM-VX

Enabling Fortran breaks the tpm2-tss-engine and isp-imx-dev packages that is requires by
packagegroup-imx-ml so we try disabling what is wrong:

1 RDEPENDS:packagegroup-imx-ml:remove = " tpm2-tss-engine" BitBake
2 INSANE_SKIP:isp-imx-dev += "dev-elf"

This compiles an image, however OpenCV still throws an error when calling cv.setUserOpenVX(True)
claiming it is not compiled with the given support and when run anyways with snippet Listing 16, the
speeds are identical for both set backends, however the speed seems suspiciously high (in magnitude
of hundreds of microseconds).

1 import cv2 as cv Python
2 m = cv.dnn.readNet('model.onnx')
3 m.setPreferable
4 m.setPreferableBackend(cv.dnn.DNN_BACKEND_TIMVX)
5 m.setPreferableTarget(cv.dnn.DNN_TARGET_NPU)
6 import numpy as np
7 m.setInput(np.full(fill_value=[1.0], shape=(1,28,28)))
8 m.forward()

Listing 16: Attempt to run OpenCV DNN on NPU

21

Chapter 7

The Graph Workflow

Let us now describe how graphs are commonly constructed.

7.1 Python Subclasses modelling Tensor functions
All frameworks have Python APIs, and all seem to use a similar form of abstraction. They declare
some class in the case of both PyTorch and Open Neural Network Exchange (ONNX) this could be
torch.nn.Module (19). A model is then defined as a class that inherits from this root, and overrides
one or more specific methods.

Once we instantiate such a class we receive an object that takes tensors and returns results. They
can be freely composed into graphs of arbitrarily complex modules containing modules which all get
compiled to a single graph.

For efficiency’s and compatibility’s sake these functions are later compiled into other forms espe-
cially when serialized into the form of any model file.

In the case of ONNX specifically we may take the example code Listing 17.

1 class OnnxModule(nn.Module): Python
2 def __init__(self):
3 super().__init__()
4
5 def forward(self, x):
6 return x + 3

Listing 17: Python code to be converted to ONNX Intermediate Representation (IR)

Which may be seen by the ONNX exporter³ as Listing 18.

1 class GraphModule(torch.nn.Module): Python
2 def forward(self, x: "f32[100, 128]"):
3 # File: ./onnx.py:48 in forward, code: return x + 3
4 scalar_tensor_default:
5 "f32[]" = torch.ops.aten
6 .scalar_tensor
7 .default(3, dtype = torch.float32)
8 add:
9 "f32[100, 128]" = torch.ops.aten
10 .add.Tensor(x, scalar_tensor_default)
11 return (add,)

Listing 18: ONNX Pseudocode

Before being compiled into a low-level representation as shown in Listing 19.

³Shortened by hand for readability

22

7 The Graph Workflow

1 graph(ONNX IR
2 name=main_graph,
3 inputs=(
4 %"x"<FLOAT,[100,128]>
5),
6 outputs=(
7 %"add"<FLOAT,[100,128]>
8),
9) {
10 0 | # node_Constant_0
11 %"val_0"<?,?> <- ::Constant() {
12 % value=Tensor<INT64,[]>(array(3), name=None)
13 %}
14 1 | # node_Cast_1
15 %"scalar_tensor_default"<FLOAT,[]> <- ::Cast(%"val_0") {
16 % to=FLOAT
17 %}
18 2 | # node_Add_2
19 %"add"<FLOAT,[100,128]> <- ::Add(%"x", %"scalar_tensor_default")
20 return %"add"<FLOAT,[100,128]>
21 }

Listing 19: ONNX IR

How this is done from arbitrary Python code is by utilising a FakeTensor class, on which the algorithm
actually runs, however instead of the operations happening they are recorded in the background and
the result is again always a FakeTensor. After the algorithm finishes, the libraries inspect what opera-
tions were performed on what tensors and constructs an equivalent program through some backend,
TorchScript, Dynamo, etc. This approach allows quite arbitrary Python programs to be compiled
however at the loss of semantics. For example the classic map(lambda x: x + 2, list) would just be
compiled into a series of completely unrelated additions on some projected content of the tensor.

These models also always have a static type of input and outputs that may be unconstrained by
the Python class which implements it but must be specified explicitly when exporting. The part of the
type that determines the size of a tensor is usually called their “shape” in this context. We set our input
shape to (100,128) in this example so the exported graph has annotations like f32[100, 128].

Oftentimes a model is made to accept a large “batch” of inputs to parallelize inference. This is imple-
mented as simply setting the first dimension as dynamic, resulting in shapes such as (?,100,128).
Models must be explicitly resized before using this dynamic size as it will default to 1 otherwise.

1 shape = (BATCH_SIZE, *shape[1:]) Python
2 model.resize_tensor_input(0, shape)
3 model.allocate_tensors()
4 model.set_tensor(0, input_data)

Listing 20: Setting input tensors with batches

1 [sum(n) for n in x] Python

Listing 21: List comprehension in Python

23

7 The Graph Workflow

The subset of python supported is quite large, even code such as Listing 21, will successfully compile
into a graph, the efficiency of which depends heavily on the type of code, for example the above
generates a massive array of round-robin addition nodes. Of course calling external functions is also
supported and these are inlined and compiled as if written directly inside forward.

If one wishes to have control over what exactly their code compiles to, it is better to directly use
modules from the given library.

These can be initialized under __init__ as instance variables and then utilized in the forward
function like Listing 22.

1 def __init__(self): Python
2 super(..., self).__init__()
3 self.relu = nn.ReLU()
4
5 def forward(self, x):
6 x = self.relu(x)
7 return x

Listing 22: Python model module methods

It is also useful to note that this code defines string names for the inputs and outputs of a graph, these
are then used to retreive many outputs or set inputs in a human-readable way.

7.1.1 forward (mandatory)

This is the crux of the pipeline, it defines the actual operations performed on the inputs and returns
what the Graph node would have as outputs.

If in need of multiple inputs and outputs the function is allowed to take more than 1 argument, and
they will be matched according to name. If on the other hand I want to return multiple outputs we can
wrap the return in a dictionary with keys being the names of our outputs and values being the given
output tensors.

7.1.2 __init__

Some frameworks, namely ONNXRuntime want their modules to be attributes of the given object, and
so we usually then initialise our submodules here and refer to them in forward. For example including
self.conv1 = ... inside the constructor and then calling as x = self.relu(x) in our forward
function.

7.1.3 Movement functions

Methods such as .to()/.cpu()/.ipu(), cause our model to be run on the given target device. However,
this may also hint to the given framework what the target is which is also taken into account in cases
of optimization, our chosen ones do not do this and use other ways to specify both where and how
to run.

7.2 Exporting Models to files
This step is extremely important as it can make or break the model’s performance. First and foremost,
TensorFlow has the function tf.saved_model.save() which simply dumps a bunch of files into a
directory that represent the model. This isn’t as interesting as the tf.lite.TFLiteConverter module.
The converter object is constructed from one of a keras model, a saved_model path generated by the
above save function, or a concrete function. After creation we can set a vast number of options such
as .optimizations, .inference_input_type or .target_spec.supported_ops. Most importantly we

24

7 The Graph Workflow

should set optimizations to the value [tf.lite.Optimize.DEFAULT], as without this the model won’t
quantize, nor perform very well. Once this is done setting inference in/out-put types is optional and
useful for quantization. It must be stated however that mixing types in the graph leads to something
called hybrid data types, which are not supported by the NPU and LiteRT will simply signal an error
and fall back onto the CPU delegate.

When quantizing the concept of a representative dataset comes into play. In Python this takes the
form of a generator that returns a random assortment of inputs from a dataset, so that the model may
be inspected for patterns, minimum and maximum values that occur at different points, in order to
minimize the effect of quantization on accuracy.

7.3 Keras
TensorFlow interoperates with and includes a complete interface to the Keras library, which includes
its own additional ways to define models. For instance .api.applications under keras contains
prebuilt models for various uses such as image recognition that can then be freely used and manipu-
lated for our needs. Another way is the .models.Sequential class, which takes a list of layers and
concatenates them one after another into a model. Keras layers are much like TensorFlow modules.

7.4 Other Tools

7.4.1 Visualization: Netron & Zetane

Netron (20) is an incredibly useful open-source tool for inspecting, visualizing and generally debugging
machine learning model graphs. Of relevant formats it supports ONNX, TensorFlow and Keras, along
with support to display all metadata contained in a given layer. It runs either as a web app or an
offline local program. Netron provides an interactive graph GUI which allows searching, layouting,
and exporting to PNG or SVG. An example of such an export in Figure 3.

input_layer

Flatten

Dense

kernel〉784×128〉
bias〉128〉

Activation

Dense

kernel〉128×10〉
bias〉10〉

dense_1

Figure 3: Example of a Netron graph render

Zetane (21) deserves an honourable mention, it is a closed-source batteries included environment for
designing ML software and includes a viewer very similar to Netron. This viewer however is much
more capable and includes 3D visualizations of convolutions on images, heatmaps, graphs of values,

25

7 The Graph Workflow

running the model with weights and inspecting propagation. It is also callable directly via a Python
API, so unlike Netron it can be integrated as a frontend into other projects.

7.4.2 Conversion: Tensor2onnx & Tflite2onnx

All manner of programs exist to convert between model formats, which is not a trivial task however.
Very generally models can be converted but some programs lose details, such as weights, names, struc-
tures that are concisely represented may unwrap into larger forms, and more. For a given application,
care should be given to verify that all required information is intact.

26

Chapter 8

Hardware Specifics

This entire section references mainly (22),VivanteVIP. Most importantly the NPU implements the
OpenVX™ API, and so can be controlled using the VeriSilicon libOpenVX implementation.

8.1 NPU Contents
Let us now walk through the contents of our NPU chip. Very little information is available publicly.

8.1.1 Parallel Processing Unit (PPU)

SIMD4, with 4 units with 256 threads each. General purpose highly-parallel unit for standard arithmetic
operations.

8.1.2 Neural Network Engine

Specialized support for convolutions. Performs 1152 Multiply–Accumulate Operation (MAC) opera-
tions per clock cycle.

8.1.3 Tensor Processor

Supported operations are listed in Table 1. Handles operations other than convolutions. Does not seem
to support 32 bit floats.

Table 1: Tensor Processor supported operations

Pooling Max, average
Unpooling Yes
Activation ReLU, Leaky ReLU (LUT for other types)

Normalization Yes
Region Proposal Support Yes

It is perhaps useful to mention that some interfacing is proprietary such as interrupts. The NPU can
send CPU interrupts, these are set using the driver and cannot in fact be understood without the driver
since the NPU and driver both assign arbitrary meaning to the given bits of the interrupt information
register.

8.2 Configuration Environment Variables read by TIM-VX
In the i.MX Machine Learning User’s Guide (23) section 6.1.2, we can read about configuration
variables.

27

8 Hardware Specifics

Table 2: Configuration Environment Variables read by TIM-VX

USE_GPU_INFERENCE As the NPU and GPU share this driver, TIM-VX uses the
value of this variable to determine which to use, "1" for

GPU or "0" for NPU
CNN_PERF Prints how long operations take. Requires

VIV_VX_DEBUG_LEVEL=1 and implied by VIV_VX_PROFILE
NN_EXT_SHOW_PERF Shows the details on how the compiler determines perfor-

mance
VIV_VX_PROFILE Enables creation of vprofiler_xxx.vpd files which may

be examined using the Vivante vAnalyzer tool from the
Vivante VDK. Information is either per-node (value: "1") or

per-graph (value: "2")
VIV_VX_DEBUG_LEVEL Prints extra debug information
VIV_MEMORY_PROFILE Only applies to CPU/GPU

VIV_VX_ENABLE_CACHE_GRAPH_BINARY Enables saving of the compiled graph to disk with a hash
so that the next time the same graph would be compiled,
this *.nb file will be loaded instead. In addition to this the
documentations claims that warmup time may take more

than one inference
VIV_VX_CACHE_BINARY_GRAPH_DIR Directory to save the cache files to

8.3 Power Modes
The NPU can be set to 4 different states,

Table 3: Power Modes

On Standard full-power
Off Can be powered off, since after leaving this state the device is reinitialized
Idle Clock speed lowered to 1

64th

Suspend Idle clock speed and requires some time to reach idle

28

Chapter 9

Frameworks

We will now cover the most popular and best supported frameworks for the NPU.

9.1 LiteRT (Lite RunTime)
This project is closely related to TensorFlow and acts as its ambassador for resource-constrained
devices. Tensorflow is used to train, prepare, and debug the model, before it’s deployed to a device
where only a stripped down runtime is installed. As such it does not contain much beyond what is
needed to run inference. Models need to be converted into the FlatBuffers tflite format before use (24).

When running the library we must set an environment variable which libvx checks to see which
device it should use, either NPU or GPU:

1 export USE_GPU_INFERENCE=0 Shell

Next we must load the external dynamic library which we pass into the LiteRT interpreter in Listing 23.

1 import tflite_runtime.interpreter as tflite Python
2
3 external_delegates = [
4 tflite.load_delegate("/usr/lib/libvx_delegate.so", "")
5]

Listing 23: Loading LiteRT delegate

Delegates are shims between the Tensorflow python library and the external system library acting as
device driver, so even though we want to use libOpenVX.so, we instead load the libvx_delegate.so
library which links against it.

1 interpreter = tflite.Interpreter(Python
2 model_path=args.model_file,
3 experimental_delegates=external_delegates,
4)

Listing 24: Create the LiteRT interpreter object

After creating the interpreter object with Listing 24 we can interact with it in one of two ways. Either
we have a prepared calling convention called a signature inside the model and call that as in Listing 25
which directly returns an output tensor.

1 signature = model.get_signature_runner() Python
2 signature(x=<tensor>)

Listing 25: LiteRT signature runner

Or we go about explicitly setting and reading each input and output. For this it is useful to
know their properties, so we may call model.get_input_details() or model.get_output_details()
respectively. These functions return lists of detail objects containing the shape, name and index. This
index can be used to read or write tensors with set_tensor in Listing 26.

29

9 Frameworks

1 model.set_tensor(model.get_input_details()[0]['index'], input_data) Python
2 model.get_tensor(model.get_output_details()[0]['index'])

Listing 26: LiteRT directly setting input tensors

9.2 Tensor Virtual Machine (TVM)
As the full name Apache Tensor Virtual Machine (TVM) (25) might suggest, this is an open-source
framework built by Apache in a similar vein to ONNX including their own IR called Relay that is
supposed to allow optimizations to be shared between multiple target backends.

It does not have its own format for files, opting to be able to import any of the other frameworks’.
It does have the additional capability to compile down models into C++ libraries in the form of shared
object files.

According to the recipe’s EXTRA_OECMAKE and the fact that it links against tim-vx in the tvm bitbake
recipe, support for VsiNPU should already be built in.

The tvm.relay.frontend module allows us to load a model, from almost any format user in machine
learning, using functions such as from_keras(), from_onnx(), from_paddle() or from_tflite().

However merely trying to import the tvm.relay module throws an error concerning python not
being able to find the scipy library. Scipy is not packaged by any of the standard NXP layers and didn’t
have a workable recipe that could be found before this went out of scope for this work.

Another interesting property of TVM is that ONNX can use it as a backend directly. Strangely
enough though ONNX even when compiled with -Donnxruntime_USE_TVM=ON does not acknowledge
TVM as a valid backend.

9.3 Open Neural Network Exchange (ONNX)
Though originally authored by joint efforts of Facebook and Microsoft, this project has flourished into a
widely supported open-source ecosystem (26). It comprises a comprehensive specification for models,
formats, types, operators and abstract data descriptions. It includes protobuf definitions of their .onnx
model files. It used to support only inference, but training was added with ONNX IR spec version 7 (27).
Models here are represented as either just a stateless inference function in the case of inference-only
models, or may be extended with an initialization and a training method which may modify internal
stateful variables of the given model. ONNX also encodes a block of operators that encode a more
complex task, these may be substituted for builtins by the runtime based off of their name⁴. The internal
structure is a list of acyclically dependent topologically sorted nodes, each node providing a name,
metadata, i/o and the given operation performed. ONNX however does provide HOF-like operators
that are applied to entire subgraphs, thus substituting the need for self-references (28). These nodes are
strung together as a pipeline each input being connected to a previously declared output of the same
name. Each output name is unique since Single Static Assignment (SSA) is mandatory, verification
tools for this and other properties are available from the creators of ONNX. The last argument of
some operators is marked as variadic, thus allowing as is traditional with regular languages to pass an
arbitrary number of inputs/outputs to it, obviously respecting the minimum arity. These graphs are
meant to be assembled programatically, however ONNX does provide a textual form of their files.

Implementing a backend for ONNX is done by providing a Python shim wrapping the functionality
as we have compiled in support for VsiNPU, we can simply list it as our inference session provider and
run inference as is shown in Listing 27.

⁴Went through changes in IRv9

30

9 Frameworks

If ONNXruntime is downloaded from pip, we can use the available provider CPU and Azure. VsiNPU
is listed as known but unavailable. Activating it yields an unavailable error so the ONNX we use must
be from Yocto.

1 import onnxruntime Python
2 session = onnxruntime.InferenceSession(
3 "model.onnx",
4 providers = ["VSINPUExecutionProvider"]
5)
6 session.run(
7 input_feed= {
8 "x": np.full(
9 fill_value=[1.0],
10 shape=(1,28,28),
11 dtype=np.float32,
12)
13 },
14 output_names = ["add"],
15)
16 outputs = session.run(None, {"input": inputTensor})

Listing 27: Running ONNX on NPU

You may convert any torch model into ONNX. Listing 28 shows how given a torch/tensorflow model
one can export it into an onnx file.

1 torch.onnx.export(Python
2 model, # model being run
3 torch.randn(1, 28, 28), # model input (or a tuple for multiple inputs)
4 "fashion_mnist_model.onnx", # where to save the model
5 input_names = ['input'], # the model's input names
6 output_names = ['output'], # the model's output names
7)

Listing 28: Exporting Torch to ONNX

9.4 Unaddressed frameworks

9.4.1 The NXP eIQ environment

The NXP eIQ stack officially supports, LiteRT, ONNX, PyTorch and OpenCV. Of these only LiteRT
officially supports the included NPU. Due to the fact that it only calls the other libraries listed and that
the environment itself is a large and unwieldy project, we opted to skip it in this work.

9.4.2 Android NNAPI

Android provides a direct official API for use in Machine Learning acceleration (29). It is however
only exclusively available on Android which requires negotiating with NXP for an image and is to be
deprecated in the future in favour of LiteRT. The Linux Kernel also has something called the NNAPI,
however that is completely unrelated.

31

9 Frameworks

9.4.3 Paddle Paddle

A popular Chinese framework for machine vision, it seems well-documented but much of the commu-
nity and so documentation is mandarin (30). It is not mentioned by NXP in documentation, however
it is marked as having supported for TIM-VX, so may be explored in the future.

32

Chapter 10

Performance

The entire point of the NPU is that the specialized hardware therein should perform these specific
following tasks very swiftly and efficiently. We will now discuss what affects the final performance
and then put this claim to a practical test.

10.0.1 Startup

This is apparent when running the C++ example where measuring the entire program’s runtime
results in 0.2 seconds on CPU and 3.4 seconds when running on NPU even though the internal timer
measuring pure inference time shows that NPU speeds up inference from 35ms to 3ms.

After first starting a program you must run at least one so-called “warmup” inference which leads
to the pipeline of compilation, optimization, deciding on tiling, and generally preparing the model for
a run, before actually running inference on the given model. We state “at least one” because that is
what the documentation states, we only encountered warmup requiring one inference run, however
documentation advises to first test how warmup behaves for the given model and then determine how
to benchmark. This takes time in a magnitude of seconds to tens of seconds depending on model size.
After this first inference all subsequent inferences should be a consistent and much higher speed, as
long as that model’s handle is kept (31). Multiple models can be kept in memory at once, each needs
its own warmup phase and then as long as they fit, they can be kept and used at will intermittently.

Some frameworks offer a way to compile multiple models so they efficiently live together in memory
(32). This might of course cause some models to have most of the cache memory to themselves, while
leaving the rest with very little, however it prioritizes the models based on the user’s preference so it
is a tradeoff of note having to expulse the cache every time a model is switched and may at times be
faster even considering that.

The abstract graph built by the user is analyzed by the implementation and operations may be
merged, changed and transformed as to provide the best possible performance (33). This is what takes
up the crux of the startup delay and what graph binary caching (see Table 2)) tries to address. It does
not affect runs of instance of a program, but rather skips part of the “warmup” inference in subsequent
runs.

Input data must be split into smaller fixed-size chunks to fit onto on-chip memory and so that
possible offloads into DRAM and other expensive memory operations may be minimized. This is
done automatically by the implementation however shows up often in performance logs. The DMA
controller then requests and processes tiles as the NPU requires.

10.0.2 Quantization

Since the NPU itself is built for all of 8/16/32-bit wide floats (23) and different sizes of integers, we may
wish to lessen the load and speed-up the inference by opting to sacrifice the precision of the result
and instead of running the entire process with F32, we use INT8, according to (34) this may lead to the
operations being implemented 2 to 4 times faster with integers.

33

10 Performance

10.0.3 Dynamic loading of Libraries

In the case of both the Python and C++ interfaces, using either ONNX or LiteRT, the case is always
that the interfacing library must be loaded dynamically. Loading may take up a significant amount of
time, in one experiment the Python profiler shows 7\% of the runtime taken up by do_lookup_x from
ld-linux.so.

10.0.4 Bus

Since the NPU acts as a completely separate device from the standard SOC’s CPU and memory, even
having its own clock, we must transfer the model and input parameters over the Advanced eXtensible
Interface (AXI) and Advanced High-performance Bus (AHB) and that takes time.

Behind that Bus lies a Memory Controller, scheduler and more which all work together to slow
down the call especially initially.

If a tensor or other piece of our pipeline is marked as being bound to memory on the device it is
called a “device tensor” (35). As an example CUDA allows the creation of a batch of memory marked
“CudaPinned” which is asynchronously accessible to the device.

10.0.5 NPU Clogging

During tests we often observed that if the input data is too large, or the NPU is otherwise mishandled
then all further requests to it simply block forever. I am sure the NPU can be reset, however we opted
to just restart the device for now whenever this occurs, sometimes having to hard-kill all processes
that are working with the NPU as they even block system restarts.

10.1 Benchmarking Practical Results
Running the same model under LiteRT and ONNX, yields interestingly different results for CPU speed
and NPU Warmup, which makes sense as even though the models implement the same structure they
have different representations and so may be compiled very differently. Seems that once the model is
up and running though the NPU has the same performance under both.

Table 4: mobilenet_v1_1.0_224_quant Performance Metrics

Framework CPU NPU Warmup NPU
ONNX 50ms 16ms 4ms
LiteRT 132ms 380ms 2.3ms

With this we can estimate what this NPU would allow us to do in terms of live image classification.
Even though the input image is only 224 by 224 pixels, using the CPU we would only get 7 images
identified per second, while using the NPU that goes up to 435 images per second, for example we
could classify in real time every single frame of 18 different cameras before dropping below 24 frames
per second on each.

Table 5: MobileNetV3Large Quantization tests

Type CPU NPU Warmup NPU
F32 107ms 6.4s 11ms
I8 107ms 6.5s 10ms
F32 (No optimization) 98ms 749ms 345ms

Table 4 shows us that the biggest difference lies in whether or not optimizations are enabled. For the
next Table 6 we use the built-in keras.applications models. They are ready-made, of various sizes,

34

10 Performance

well-documented, don’t use exotic operators, and accurately depict what a common workload might
look like, so we decided they’d make good sources of performance data. Other ML papers on the matter
seem to also use some combinations of these model architectures to show results (2).

Table 6: Various Models performance

Model CPU NPU Warmup NPU
VGG19 4s 37s 34ms
MobileNetV3Large 107ms 6.4s 11ms
MobileNetV3Small 36ms 2.6s 4ms
MobileNetV2 82ms 5.1s 9ms
MobileNet 131ms 5.5s 7ms

As the NPU is optimized only for specific tasks so certain operands may end up just being run on the
CPU even if the NPU is set as the target, only emitting a Warning notice to standard error.

In addition, an inefficiently built model may even run slower on NPU due to the various overheads if
it is not something that gets optimized, bumping a 52ms runtime on the CPU up to a consistent 200ms
on the NPU. I reiterate, enabling hardware acceleration slowed down our inference to 25% of what it
achieved on just CPU.

Testing with absolutely minimal models like the one suggested for usage on the MNIST dataset,
shows that below some threshold of size the CPU is again faster. For example the NPU will not go
below 400μs while the CPU manages 180μs.

35

Chapter 11

Suggesting PikeOS integration

We see that the most integral part of porting this ecosystem to a given OS, would be to get TIM-VX
working as that is targeted by all the other libraries. For that, the following must first be addressed.

Porting libOpenVX This will be the most difficult part as that is closed-source and shipped as a
prebuilt binary artefact. This shared object binary can of course be patched and edited to work
around some issues; however, there is little that can be done if the library does not work for some
other more nuanced reason.

Runtime dependencies Luckily, libOpenVX has very few runtime dependencies. Apart from the
standard set of linux libraries libOpenVX requires libVSC, libGAL, libArchModelSw and libNNAr-
chPerf, all of which are also shipped as binary blobs. Only shipping libOpenVX and omitting
TIM-VX does not lessen the load substantially, as all of these dependencies are also required by it.

Compile TIM-VX against our libOpenVX library and ship it All our mentioned frameworks
have multiple sets of bindings, primarily always Python and C++, along with a mix of other
languages. For performance sensitive applications, it would be beneficial to support the C++ API
while Python will depend on whether clients wish to prototype their applications on the device
or if the workflow of training on external hardware and only running on the device is sufficient.

Wrapper ML frameworks need to be ported Once that is in place TVM and OpenCV support
extrernal file types, while ONNX, Keras and TensorFlow provide tooling to convert and often
have built-in facilities to work with, import and export all of their respective formats. And so
supporting one of these well should suffice for most applications. We would suggest the Lite
Runtime as that is the one “blessed” by NXP as their primary supported framework and it has the
largest community.

36

Chapter 12

Conclusion

We set out to perform a reconaissance of hardware acceleration in the context of machine learning on
embedded devices. To determine how the hardware is accessed, what external libraries let us interface
into it, and to test that the performance gains are as claimed and suspected.

Much of the authors’ time was spent on familiarization with the bitbake Yocto build system,
BSPs, flashing to the EVK, navigating hardware vendor documentation, and other themes completely
tangential to the problems we set out to address. Despite that, we identified the primary point of ingress
for controlling the NPU, several libraries that support it even outside the NXP specification.

We either compiled these libraries with NPU support, recorded what steps were done to do so, and
afterwards described how to specify to the library that it should utilize the NPU. Or in the cases where
a roadblock was hit, we described what the next step would be in getting it to work. All the code used
is included as part of this work.

We identified a good set of models to use for benchmarks and then benchmarked the libraries on
CPU and NPU, concluding that in terms of raw NPU inference perforance on the same model their
differences are negligible, if optimized correctly. And that the the NPU itself achieves tenfold or
hundredfold performance compared to the CPU, when configured correctly, depending on model.

Finally, we outlined which libraries are relevant for PikeOS to claim NPU support and briefly
discussed from an outside perspective how that might be done.

37

Chapter 13

Build configuration

1 Build Configuration:
2 BB_VERSION = "2.8.0"
3 BUILD_SYS = "x86_64-linux"
4 NATIVELSBSTRING = "universal"
5 TARGET_SYS = "aarch64-poky-linux"
6 MACHINE = "tqma8mpxl-mba8mpxl"
7 DISTRO = "fsl-imx-wayland"
8 DISTRO_VERSION = "6.6-scarthgap"
9 TUNE_FEATURES = "aarch64 armv8a crc crypto"
10 TARGET_FPU = ""
11 meta
12 meta-poky = "HEAD:200d12b6a58ad961d60a7774ca0f7a9d29498724"
13 meta-oe
14 meta-python
15 meta-multimedia = "HEAD:72018ca1b1a471226917e8246e8bbf9a374ccf97"
16 meta-freescale = "HEAD:0627128b341cfb2bef7a0832ce8cac0ce1127f13"
17 meta-qt6 = "HEAD:586a6cb5aec755803a3be3cec359baafe89d6432"
18 meta-tq = "HEAD:257b8c0b4b6df3bb27fb69bd2312dd254c73fed3"
19 meta-imx-ml
20 meta-imx-sdk
21 meta-imx-bsp = "HEAD:219f6d04a4c339eb6f2dc626f944bbdf9a716ff5"
22 meta-arm
23 meta-arm-toolchain = "HEAD:950a4afce46a359def2958bd9ae33fc08ff9bb0d"
24 meta-freescale-distro = "HEAD:b9d6a5d9931922558046d230c1f5f4ef6ee72345"
25 meta-overlay = "<unknown>:<unknown>"
26 meta-virtualization = "HEAD:6f3c1d8f90947408a6587be222fec575a1ca5195"
27 meta-filesystems
28 meta-networking = "HEAD:72018ca1b1a471226917e8246e8bbf9a374ccf97"
29 meta-tpm
30 meta-parsec = "HEAD:459d837338ca230254baa2994f870bf6eb9d0139"
31 meta-clang = "HEAD:2b7433611d80f6d0ee1b04156fa91fc73d3c2665"

38

Chapter 14

Glossary

AHB. Advanced High-performance Bus 34

AXI. Advanced eXtensible Interface 34

EVK. Evaluation Kit 2, 5, 11, 37

HOF. Higher Order Function 30

IR. Intermediate Representation 22, 23, 30

MAC. Multiply–Accumulate Operation. 𝑎 ← 𝑎 + (𝑏 × 𝑐) 27

ONNX. Open Neural Network Exchange 4, 22, 23, 25, 30, 31, 34, 36

SSA. Single Static Assignment 30

TIM-VX. Tensor Interface Module for OpenVX 3, 6, 11, 18, 19, 21, 27, 28, 32

TVM. Tensor Virtual Machine 4, 30, 36

VsiNPU. VeriSilicon™ NPU 19, 30, 31

XML. eXtensible Markup Language 17

tensor. Sufficiently described for purposes of this text as multidimen-
sional arrays

3, 6, 13, 15, 22, 23, 24, 27, 29, 30, 34

39

Bibliography

1. VeriSilicon/TIM-VX. Online. [Accessed 10 February 2025]. Available from: https://github.com/
VeriSilicon/TIM-VX

2. MOGAKA, Obed M., FORSBERG, Håkan and DANESHTALAB, Masoud. Bridging Quantization
and Deployment: A Fixed-Point Workflow for FPGA Accelerators. 2025.

3. Farewell and thank you for the continued partnership, Francois Chollet!- Google Developers
Blog. Online. [Accessed 10 May 2025]. Available from: https://developers.googleblog.com/en/
farewell-and-thank-you-for-the-continued-partnership-francois-chollet/

4. h5py: Manual. Online. [Accessed 29 April 2025]. Available from: https://docs.h5py.org/en/
stable/quick.html

5. The HDF5 Field Guide | Getting Started. Online. [Accessed 1 May 2025]. Available from:
https://support.hdfgroup.org/documentation/hdf5/latest/_intro_h_d_f5.html

6. HAMANN, David. David Hamann. Online. 2020. [Accessed 25 October 2024]. Available from:
https://davidhamann.de/2020/04/05/exploiting-python-pickle/

7. GitHub - yoctoproject/bmaptool: BMAP Tools. Online. [Accessed 2 May 2025]. Available from:
https://github.com/yoctoproject/bmaptool

8. The System Package Data Exchange™ - Learn. Online. [Accessed 10 May 2025]. Available
from: https://spdx.dev/learn/overview/

9. The Yocto Project - Dev Manual. Online. [Accessed 10 May 2025]. Available from: https://docs.
yoctoproject.org/dev/dev-manual/

10. FreeBSD Wiki - Flattened Device Tree. Online. [Accessed 10 May 2025]. Available from:
https://wiki.freebsd.org/FlattenedDeviceTree

11. The Khronos Group. Online. 2011. [Accessed 25 October 2024]. Available from: https://www.
khronos.org/openvx/

12. The OpenVX™ Neural Network Extension. Online. [Accessed 2 May 2025]. Available from:
https://registry.khronos.org/OpenVX/extensions/vx_khr_nn/1.3/html/vx_khr_nn_1_3.html

13. KhronosGroup/OpenVX-sample-impl. Online. [Accessed 25 October 2024]. Available from:
https://github.com/KhronosGroup/OpenVX-sample-impl

14. AMD OpenVX documentation | ROCm™ Software Future Release. Online.
[Accessed 3 May 2025]. Available from: https://rocm.docs.amd.com/projects/MIVisionX/en/
develop/how-to/amd_openvx.html

15. repo - The Multiple Git Repository Tool. Online. [Accessed 2 May 2025]. Available from:
https://gerrit.googlesource.com/git-repo

16. GitHub - nxp-imx/imx-manifest: i.MX Release Manifest. Online. [Accessed 2 May 2025].
Available from: https://github.com/nxp-imx/imx-manifest

17. Yocto Project Reference Manual | Required Packages for the Host Development System. Online.
[Accessed 2 May 2025]. Available from: https://docs.yoctoproject.org/2.4/ref-manual/ref-
manual.html#detailed-supported-distros

40

https://github.com/VeriSilicon/TIM-VX
https://github.com/VeriSilicon/TIM-VX
https://developers.googleblog.com/en/farewell-and-thank-you-for-the-continued-partnership-francois-chollet/
https://developers.googleblog.com/en/farewell-and-thank-you-for-the-continued-partnership-francois-chollet/
https://docs.h5py.org/en/stable/quick.html
https://docs.h5py.org/en/stable/quick.html
https://support.hdfgroup.org/documentation/hdf5/latest/_intro_h_d_f5.html
https://davidhamann.de/2020/04/05/exploiting-python-pickle/
https://github.com/yoctoproject/bmaptool
https://spdx.dev/learn/overview/
https://docs.yoctoproject.org/dev/dev-manual/
https://docs.yoctoproject.org/dev/dev-manual/
https://wiki.freebsd.org/FlattenedDeviceTree
https://www.khronos.org/openvx/
https://www.khronos.org/openvx/
https://registry.khronos.org/OpenVX/extensions/vx_khr_nn/1.3/html/vx_khr_nn_1_3.html
https://github.com/KhronosGroup/OpenVX-sample-impl
https://rocm.docs.amd.com/projects/MIVisionX/en/develop/how-to/amd_openvx.html
https://rocm.docs.amd.com/projects/MIVisionX/en/develop/how-to/amd_openvx.html
https://gerrit.googlesource.com/git-repo
https://github.com/nxp-imx/imx-manifest
https://docs.yoctoproject.org/2.4/ref-manual/ref-manual.html#detailed-supported-distros
https://docs.yoctoproject.org/2.4/ref-manual/ref-manual.html#detailed-supported-distros

Bibliography

18. TIM VX Backend For Running OpenCV On NPU. Online. [Accessed 2 May 2025]. Available
from: https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-
NPU

19. Module — PyTorch 2.6 documentation. Online. [Accessed 17 February 2025]. Available from:
https://pytorch.org/docs/stable/generated/torch.nn.Module.html

20. Netron App. Online. [Accessed 2 May 2025]. Available from: https://netron.app/

21. Zetane | Reliable AI automation for high-risk industries. Online. [Accessed 2 May 2025].
Available from: https://zetane.com/

22. i.MX 8M Plus Applications Processor Reference Manual. Online. [Accessed 1 January 2025].
Available from: https://www.nxp.com/webapp/Download?colCode=IMX8MPRM

23. i.MX Machine Learning User's Guide. Online. [Accessed 25 October 2024]. Available from:
https://www.nxp.com/docs/en/user-guide/IMX-MACHINE-LEARNING-UG.pdf

24. LiteRT overview - Google AI Edge. Online. [Accessed 29 April 2025]. Available from: https://ai.
google.dev/edge/litert

25. WANG, Yanzhao and XIE, Fei. Extending Tensor Virtual Machine to Support Deep-Learning
Accelerators with Convolution Cores. In : Online. 2022. p. 189––194. Available from: https://
ieeexplore.ieee.org/document/9763822/?arnumber=9763822

26. ONNX. Online. [Accessed 2 May 2025]. Available from: https://onnx.ai/

27. Open Neural Network Exchange Intermediate Representation (ONNX IR) Specification - ONNX
1.18.0 documentation. Online. [Accessed 17 February 2025]. Available from: https://onnx.ai/
onnx/repo-docs/IR.html

28. ONNX Concepts - ONNX 1.18.0 documentation. Online. [Accessed 17 February 2025].
Available from: https://onnx.ai/onnx/intro/concepts.html

29. Neural Networks API | Android NDK | Android Developers. Online. [Accessed 2 May 2025].
Available from: https://developer.android.com/ndk/guides/neuralnetworks

30. GitHub - PaddlePaddle/Paddle: PArallel Distributed Deep LEarning: Machine Learning
Framework from Industrial Practice. Online. [Accessed 3 May 2025]. Available from: https://
github.com/PaddlePaddle/Paddle

31. i.MX 8M Plus NPU Warmup Time. Online. [Accessed 3 May 2025]. Available from: https://
www.mouser.com/pdfDocs/AN12964.pdf

32. Edge TPU Compiler | Coral. Online. [Accessed 1 May 2025]. Available from: https://coral.ai/
docs/edgetpu/compiler/

33. ABEYSINGHE, Madushan, VILLARREAL, Jesse, WEAVER, Lucas and BAKOS, Jason. OpenVX
Graph Optimization for Visual Processor Units. In : 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). Online. IEEE, 2019. p. 123––
130. Available from: https://doi.org/10.1109/asap.2019.00-19

34. PyTorch documentation - Quantization. Online. [Accessed 2 May 2025]. Available from:
https://pytorch.org/docs/stable/quantization.html

35. Device tensors. Online. [Accessed 3 May 2025]. Available from: https://onnxruntime.ai/docs/
performance/device-tensor.html

41

https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU
https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://netron.app/
https://zetane.com/
https://www.nxp.com/webapp/Download?colCode=IMX8MPRM
https://www.nxp.com/docs/en/user-guide/IMX-MACHINE-LEARNING-UG.pdf
https://ai.google.dev/edge/litert
https://ai.google.dev/edge/litert
https://ieeexplore.ieee.org/document/9763822/?arnumber=9763822
https://ieeexplore.ieee.org/document/9763822/?arnumber=9763822
https://onnx.ai/
https://onnx.ai/onnx/repo-docs/IR.html
https://onnx.ai/onnx/repo-docs/IR.html
https://onnx.ai/onnx/intro/concepts.html
https://developer.android.com/ndk/guides/neuralnetworks
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://www.mouser.com/pdfDocs/AN12964.pdf
https://www.mouser.com/pdfDocs/AN12964.pdf
https://coral.ai/docs/edgetpu/compiler/
https://coral.ai/docs/edgetpu/compiler/
https://doi.org/10.1109/asap.2019.00-19
https://pytorch.org/docs/stable/quantization.html
https://onnxruntime.ai/docs/performance/device-tensor.html
https://onnxruntime.ai/docs/performance/device-tensor.html

Bibliography

36. NXP Community. Online. 2020. [Accessed 19 February 2025]. Available from: https://
community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-OpenVX-extension-for-
NPU-GPU-to-accelerate-machine/ta-p/1113429

37. MBa8MPxL User's Manual. Online. [Accessed 25 October 2024]. Available from: https://www.
tq-group.com/filedownloads/files/products/embedded/manuals/arm/carrierboard/MBa8MPxL/
MBa8MPxL.UM.0103.pdf

38. i.MX 8M Plus Applications Processor Datasheet for Industrial Products. Online.
[Accessed 27 October 2024]. Available from: https://www.nxp.com/webapp/Download?
colCode=IMX8MPIEC

42

https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-OpenVX-extension-for-NPU-GPU-to-accelerate-machine/ta-p/1113429
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-OpenVX-extension-for-NPU-GPU-to-accelerate-machine/ta-p/1113429
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/How-to-use-OpenVX-extension-for-NPU-GPU-to-accelerate-machine/ta-p/1113429
https://www.tq-group.com/filedownloads/files/products/embedded/manuals/arm/carrierboard/MBa8MPxL/MBa8MPxL.UM.0103.pdf
https://www.tq-group.com/filedownloads/files/products/embedded/manuals/arm/carrierboard/MBa8MPxL/MBa8MPxL.UM.0103.pdf
https://www.tq-group.com/filedownloads/files/products/embedded/manuals/arm/carrierboard/MBa8MPxL/MBa8MPxL.UM.0103.pdf
https://www.nxp.com/webapp/Download?colCode=IMX8MPIEC
https://www.nxp.com/webapp/Download?colCode=IMX8MPIEC

	English
	Abstract
	Keywords

	Czech
	Abstract
	Keywords

	Declaration
	Introduction
	NPUs (Neural Processing Units)
	File Formats
	Keras / HDF5
	Pickle
	Block map .bmap
	System Package Data Exchange .spdx
	OpenEmbedded Image Creator .wic
	OpenEmbedded kickstart file .wks
	Flattened Device Tree .fdt / Device Tree Source .dts

	OpenVX™ & TIM-VX
	Setting up the environment
	Kernel Tests
	ONNXRuntime
	TIM-VX
	OpenCV

	The Graph Workflow
	Python Subclasses modelling functions
	forward (mandatory)
	__init__
	Movement functions

	Exporting Models to files
	Keras
	Other Tools
	Visualization: Netron & Zetane
	Conversion: Tensor2onnx & Tflite2onnx

	Hardware Specifics
	NPU Contents
	Parallel Processing Unit (PPU)
	Neural Network Engine
	Processor

	Configuration Environment Variables read by
	Power Modes

	Frameworks
	LiteRT (Lite RunTime)
	
	
	Unaddressed frameworks
	The NXP eIQ environment
	Android NNAPI
	Paddle Paddle

	Performance
	Startup
	Quantization
	Dynamic loading of Libraries
	Bus
	NPU Clogging
	Benchmarking Practical Results

	Suggesting PikeOS integration
	Conclusion
	Build configuration
	Glossary
	Bibliography

